Assessing the Credibility of Instrumental Variables Inference with Imperfect Instruments Via Sensitivity Analysis

نویسنده

  • Richard Ashley
چکیده

Consistent instrumental variables (IV) estimation requires instruments uncorrelated with the model errors, but this assumption is usually both suspect and untestable. Here the asymptotic sampling distribution of the IV parameter estimator is derived for any specified instrument-error covariance vector. This result makes it possible to quantify the sensitivity of any particular IV inference result to instrument-error correlations, allowing one to assess the robustness of such inferential conclusions to uncertainty in the validity of the instruments. An application illustrating the value of this sensitivity analysis is given to a study by Acemoglu et al. (2001). JEL: C10, C12

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ivmodel: An R Package for Inference and Sensitivity Analysis of Instrumental Variables Models with One Endogenous Variable

We present a unified R software ivmodel for analyzing instrumental variables with one endogenous variable. The package implements a general class of estimators, k-class estimators, and two confidence intervals that are fully robust to weak instruments. The package also provides power formulas. Finally, the package contains methods for sensitivity analysis to examine the sensitivity to the the i...

متن کامل

Assessing bias in the estimation of causal effects: Rosenbaum bounds on matching estimators and instrumental variables estimation with imperfect instruments

Propensity score matching provides an estimate of the effect of a “treatment” variable on an outcome variable that is largely free of bias arising from an association between treatment status and observable variables. However, matching methods are not robust against “hidden bias” arising from unobserved variables that simultaneously affect assignment to treatment and the outcome variable. One s...

متن کامل

Instrumental Variables Regression with Measurement Errors and Multicollinearity in Instruments

In this paper we obtain a consistent estimator when there exist some measurement errors and multicollinearity in the instrumental variables in a two stage least square estimation of parameters. We investigate the asymptotic distribution of the proposed estimator and discuss its properties using some theoretical proofs and a simulation study. A real numerical application is also provided for mor...

متن کامل

Assessing Effects of Racial Perceptions on Political Knowledge: A Bayesian Approach to Instrumental Variables∗

Causal inference in observational studies is notoriously difficult without physical randomization of treatment. Yet when the treatment of interest cannot be randomized, as is often the case in political science, randomized instruments may enable scholars to draw causal inferences of theoretical interest. We illustrate a Bayesian framework developed in the statistical literature of analyzing, ma...

متن کامل

Estimation with Many Instrumental Variables∗

Using many valid instrumental variables has the potential to improve efficiency but makes the usual inference procedures inaccurate. We give corrected standard errors, an extension of Bekker (1994) to nonnormal disturbances, that adjust for many instruments. We find that this adujstment is useful in empirical work, simulations, and in the asymptotic theory. Use of the corrected standard errors ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007